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Production of hydrocarbons and water from subsurface reservoirs are known to cause 
permanent deformation of the reservoir and seismicity along faults both of which are 
detrimental to sustainable development of natural resources. Most of the prior studies 
on understanding fluid flow-induced plasticity and seismicity have focused on one or the 
other phenomenon due to the numerical difficulty associated with simultaneous modeling 
of the two failure phenomena because stress and deformation evolve non-linearly in both 
plasticity and seismicity. However, in reservoirs undergoing long-term production, plastic 
failure can alter the stress paths of points on a fault such that the onset, location, and 
magnitude of actual seismic events can no longer be predicted by a poroelastic simulation 
due to inaccurate stress and deformation history. We present a computational framework 
for coupled multiphase flow, finite strain poroplastic deformation, and dynamic fault slip 
and use it to understand the impact of plastic deformation on the onset, location, and 
magnitude of induced fault slip events. We evaluate the impact of plasticity on reservoir 
pressure, deformation, induced stress, and fault slip by comparing infinitesimal strain 
elastic and finite strain poro-elastoplastic models. For real-world applications, we consider 
different scenarios where the reservoir is either mechanically weaker or stronger than the 
caprock. We analyze the stress evolution as a function of the change in reservoir pressure 
to understand the role of contrast in reservoir and caprock elastic moduli on geomechanical 
stability. The results show that the poroplastic reservoir exhibits larger vertical deformation 
and delayed slip than the poroelastic reservoir after the same amount of oil production. For 
the same amount of pressure drop, a reservoir with a smaller modulus than the caprock 
displays a larger vertical displacement and an earlier onset of both plastic failure and fault 
slip. For a reservoir with a larger modulus than the caprock, vertical displacement is larger 
on the reservoir top boundary and smaller on the ground surface, and a higher pressure 
drop is needed to induce plastic failure and fault slip.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Production and injection activities in faulted and stress-sensitive reservoirs can raise concerns of fault destabiliza-
tion [1–3]. Coupled numerical modeling of fluid flow and mechanical deformation in such reservoirs is an active area of 
research for the purpose of assessing the hazards of fault reactivation and induced seismicity during oil production [4–8], 
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Fig. 1. Model problem of flow-induced deformation in a faulted reservoir-caprock system. Well operation causes a change in the pore pressure (|�p| > 0) 
and a change in the state of stress (|�σ | > 0) inside the permeable reservoir and a change in the state of stress in caprock and basement. If the stress 
change is large enough, it can induce plastic/permanent deformation in the rock. If the fault is critically-stressed (depends on fault’s dip, cohesion and 
friction, and tectonic compression), the stress change can induce fault slip at the hypocenter.

gas production [9,10], water extraction [11], wastewater disposal [12–14], geologic CO2 sequestration [15–17], and hydraulic 
fracturing [18]. However, most of these studies assume a linear elastic infinitesimal deformation response of the rock host-
ing the fault. We know that deformation response of many rocks, such as clayey sands, ultra-low permeability shales, and 
carbonates can become viscoelastic or elstoplastic at large effective stresses typically encountered during long-term produc-
tion or injection [19–21]. Hard brittle rocks also show inelastic stress-strain behaviors through microcracking activity [22]. 
Long-term groundwater withdrawal in California’s Central Valley [23,24] and oil and water production in Wilmington [25,26]
and Gulf of Mexico [7] oilfields are examples where both large strains (e.g., > 2%) and plastic deformation are expected to 
occur. Plastic deformation also occurs at relatively small values of the induced stresses if the rock is mechanically weak or 
ductile, e.g. chalk reservoirs in Ekofisk [27], some shales [28,29], and clay beds or aquitards [30]. Presence of clay particles 
or interbeds in sandstone aquifers can give rise to a lag in the mechanical response of aquifers under depletion [31,32], 
which manifests as plasticity. In general, long-term fluid extraction or injection activities can activate nonlinearity in both 
the material constitutive response and the kinematics of deformation. Use of elastic and infinitesimal deformation models 
in those cases will predict inaccurate stresses and, therefore, inaccurate onset, magnitude, and duration of the fault slip 
events. This is especially problematic for smaller magnitude earthquakes or aseismic slip events (Mw<4), which are not felt 
by humans but may cause damage to surface facilities and leakage of reservoir fluids (or other types of stored fluids such as 
natural gas or CO2) along the activated fault into freshwater resources. Other manifestations of plastic deformation include 
drop in the reservoir permeability, loss of well productivity/injectivity, and wellbore failure [25,33].

Once a rock fails plastically, its stress path can deviate significantly from that of an elastically deforming rock in reservoirs 
that are producing or injecting for decades. Plastic dissipation also changes the mechanical energy budget such that energy 
available for brittle shear or tensile failure events can be expected to be smaller [34]. Given that fault slip is an irreversible 
deformation process, and it is coupled to stresses in the host rock and driven by the elastic strain energy accumulated 
during production/injection, we hypothesize that the changes induced by plasticity in the stress path of the host rock can 
change the onset, location, magnitude and duration of the induced slip events. The present study tests this hypothesis.

Accounting for the above changes can improve the agreement between model-predicted seismicity and ground deforma-
tion [11,35] and the observed data. Therefore, there is an urgent need to develop simulation methods that resolve coupled 
flow, geomechanics, and dynamic faulting processes in plastically deforming rocks and demonstrate their application to real 
reservoirs. Over the years, multiple coupled flow and elastoplastic geomechanical frameworks have been proposed [36–47], 
mostly in absence of fault slip. Here, we build on that foundation to develop such a method. Applying the method to faulted 
reservoir-caprock systems with realistic geological structure, heterogeneous rock properties, and multiphase flow is another 
challenge that we tackle. The paper is organized as follows. First, we present the mathematical problem of coupled multi-
phase flow, finite strain plasticity, and dynamic fault slip. The numerical model based on a finite element discretization of 
the mechanics problem and a finite volume discretization of the flow problem is presented next. The model is tested on 
benchmark consolidation problems before being applied to a realistic case of oil production from an anticlinal oil reservoir 
confined by caprock and basement and intersected by a fault. Results from simulations with different elastic moduli for 
reservoir and caprock layers are analyzed to understand the impact of plasticity on characteristics of fault slip in different 
rock types.

2. Coupled multiphase flow, finite strain poromechanics, and fault slip

Consider the deformation of an oil reservoir, confined between caprock and basement and intersected by a fault, due 
to oil production from a well drilled into the reservoir. See Fig. 1 for a schematic of the conceptual problem. The porous 
medium has three phases: the solid skeleton, which is made up of solid grains and pores, and the two fluid phases that 
occupy the pores [48]. Now, let’s consider the deformation of a representative elementary volume (REV) V 0 ⊂ R3 of the 
reservoir (Fig. 2). �0 is the boundary of the REV. We denote the reference configuration of the volume by the solid particle 
position vector X ∈ R3 and the fluid particle position vectors Xo and X w , where subscripts o and w refer to oil and 
2
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Fig. 2. Kinematics of a porous body saturated with two fluids. ϕ is the solid deformation mapping. Mappings of the two fluid phases are not shown for 
brevity. Multiplicative elastoplasticity is implied by the decomposition of the deformation gradient F into elastic F e and plastic F p parts and the stress-free 
intermediate configuration.

water phases. Let ϕ : V 0 × [0, t] → R3 be the solid deformation mapping, where t denotes time. After deformation, the 
current or deformed configuration is given by the position vector x, which is occupied by all three phases simultaneously. 
The deformed volume is V within the boundary �. The solid phase deformation vector is u = x − X , and the solid phase 
deformation gradient tensor is F = ∇X x = 1 + ∇X u, where ∇X denotes partial derivatives with respect to X and 1 is the 
rank-2 identity tensor. We will use ∇ = F −T∇X to denote partial derivatives with respect to current coordinates x. The 
superscript −T indicates transpose of inverse. Let M = Mw + Mo be the total fluid mass in the reference configuration per 
unit bulk volume in the reference configuration, where Mw = ρwφsw J is the water mass content, Mo = ρoφso J is the 
oil mass content, φ is the true or Eulerian porosity defined as the pore volume in the current configuration over the bulk 
volume in the current configuration, ρw and ρo are water and oil densities in the current configuration, sw and so are water 
and oil saturations in the current configuration with respect to the current pore volume, and J = detF = dV /dV 0 is the 
Jacobian of solid deformation. The saturations must sum to 1 by definition: sw + so = 1. The Lagrangian porosity (current 
pore volume per unit reference bulk volume) is defined as � = φ J . As commonly considered in the literature [39], we take 
the solid motion as the reference motion and describe the fluid motion relative to the solid motion.

We have the following strain and deformation tensors:

E = (1/2)(F T F − 1) = (1/2) (∇X u + u∇X + ∇X u · u∇X ) , (1)

ε = (1/2) (∇u + u∇) = sym[∇u], (2)

b = F F T, (3)

C = F T F (4)

where E is the Green-Lagrange strain tensor, ε is the infinitesimal strain tensor, b is the left Cauchy-Green deformation 
tensor and C is the right Cauchy-Green deformation tensor. Here, sym denotes the symmetric operator. The linearized 
volumetric strain in the current configuration is εv = tr[ε] = log J . This yields J = exp (εv ), which is approximated as 
J = 1 + εv in the infinitesimal deformation theory. As fluid is produced from or injected into the reservoir, principles of 
conservation of mass and momentum of the solid and fluid components govern the evolution of state variables of the system 
such as stress, strain, fluid mass content, and fluid pressure.

2.1. Balance laws

Mass conservation We assume quasi-static mechanical equilibrium. The mass content of the solid phase is conserved. This 
will be utilized later to obtain the porosity evolution equation. The conservation equation of the water phase mass during 
deformation, written in the reference configuration of the porous medium, reads as

.
Mw + J∇ · w w + Jqw = 0, in V 0 (5)

where 
.
( ) denotes the material time derivative, w w = ρw v w is the water mass flux, qw is the water mass production 

term due to wells, v w = − (kkrw/μw) · (∇pw − ρw g) is the water volumetric flux or the Darcy velocity (obtained from 
the conservation of fluid momentum after neglecting inertia, drag, and viscous forces), pw is the excess water pressure 
(above the initial pore pressure), k is the rank-2 permeability tensor, μw is the dynamic viscosity of the water, krw is the 
relative permeability of water in presence of oil, and g is the acceleration vector due to gravity. The flux terms are in the 
current configuration. The permeability transforms as k = (1/ J )F k0 F T, where k0 is the permeability tensor in the reference 
configuration. The water mass content in the current configuration is mw = Mw/ J . By definition, the water density in the 
reference configuration is ρ0

w = Jρw . Similar to Eq. (5), we have another conservation equation for the oil phase mass Mo

that introduces the Darcy flux of oil in terms of ρo , oil viscosity μo , oil relative permeability kro , and oil phase pressure po . 
Since oil and water are immiscible phases, the difference between their pressures is the capillary pressure Pc = po − pw , 
which is often modeled via a saturation-dependent capillary pressure relation, also known as the retention curve in air-
water systems studied in soil hydrology. A non-zero capillary pressure can affect the elastic stiffness of the porous medium.
3
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Momentum conservation Given the possibility of large deformations and rotations in the finite strain theory, and the need 
to track the displacement of the solid skeleton from its reference configuration, it is customary to write the conservation of 
linear momentum in the reference configuration as

∇X · P + Jρb g = 0, ∀X ∈ V 0 (6)

where P = Jσ F −T is the first Piola-Kirchhoff (PK) stress tensor (asymmetric tensor) defined in terms of the total Cauchy 
stress tensor σ (symmetric). σ is a measure of force acting on an area in the current configuration per unit area in the 
current configuration. P is a measure of force acting on an area in the current configuration per unit area in the reference 
configuration. Above, ρb = (1 − φ)ρs + φ(ρoso + ρw sw) is the bulk density in the current configuration, and ρs is the solid 
grain density. The second PK stress tensor, which measures force in the reference configuration per unit area in the reference 
configuration (symmetric tensor), is defined as S = J F −1σ F −T , which shows how the stress in the current configuration 
can be pulled back to the reference configuration. This also implies P = F S . When F � 1 and J � 1, S can be replaced 
by σ , and E can be replaced by ε such that we recover the infinitesimal strain model. The Kirchhoff stress tensor in the 
current configuration is defined as τ = Jσ = F S F T. To facilitate constitutive modeling of fluid-saturated rocks, which is 
discussed in detail below, we define the effective stresses: the effective Kirchhoff stress τ ′ = Jσ ′ and the effective second 
PK stress S ′ = J F −1σ ′ F −T .

2.2. Poroplastic deformation

Following the poroelastoplastic formulation proposed earlier [49,37,38], we use a multiplicative decomposition of F and 
an additive decomposition of total fluid mass M into their elastic and plastic parts:

F = F e F p, M = Me + Mp, (7)

where the superscripts e and p denote elastic and plastic parts, respectively. The elastic part of left Cauchy-Green tensor is 
be = F e F e,T. The elastic part of the right Cauchy-Green tensor is C e = F e,T F e and the plastic part is C p = F p,T F p. The volu-
metric plastic strain εp

v = εv − εe
v = log J p with J p = det F p. For isochoric plastic flow, a common assumption in plasticity, 

J p = 1 and J = det F e.

2.3. Fault slip problem

To model seismic/aseismic slip on the fault, we treat the fault as a strong discontinuity, i.e. the displacement field 
is discontinuous across the fault, as opposed to the weak discontinuity which implies only a discontinuous strain field. 
The case of a strong discontinuity emerging inside an initially continuous finite element has been treated in the finite 
strain theory [50,44] by enhancing the deformation gradient in the nonconforming elements with an additional component 
related to the displacement jump and enhancing the finite element test functions with a Heaviside function. Here, we 
consider the conforming case where the fault slip is constrained to lie along the edges between adjacent finite elements. 
The conforming case is practical in many geological settings where geometry of the rupture surface of a seismogenic fault 
is known from previous earthquakes, well logs, or basin modeling studies. The approach requires construction of a mesh 
conforming to the fault geometry, which can be time-consuming in a 3D domain containing multiple intersecting or curved 
faults. However, simulation of the conforming case is expected to be faster than that of the nonconforming case which has 
to solve for the rupture path as well. We treat the fault as a frictional interface � f (reference configuration) across which 
the displacement field can be discontinuous to accommodate seismic/aseismic slip. We define the fault slip vector d f in the 
current configuration as the displacement discontinuity or jump from the ‘−’ side (�+) to the ‘+’ side (�−) of the fault (e.g. 
the footwall and hanging wall sides of a dip-slip fault) as

u+ − u− = d f on � f . (8)

We define n̂ f as the unit normal vector on the fault (reference configuration) pointing from the -ve side to +ve side. The 
normal vector can vary in space for a fault that is either naturally arcuate or becomes curved due to reservoir expansion 
or contraction induced by fluid injection or production. Mechanical equilibrium requires continuity of the total traction 
vector across the fault: T +

f = (F S)+n̂ f = (F S)−n̂ f = T −
f . The effective fault traction vector is a projection of the effective 

second PK tensor stress tensor on the fault: l f = F S ′n̂ f . We define the local fault coordinate system using three mutually 
orthogonal unit vectors, (ŝ1, ̂s2, ̂n f ), which are positive in the left-lateral, updip and opening directions of the fault. l f can 
be split into a shear traction vector and a normal traction vector as (τ s, σ ′

nn̂ f ) where τ s = (l f · ŝ1)ŝ1 + (l f · ŝ2)ŝ2 lies on the 
2D fault surface and σ ′

n = l f · n̂ f . Similarly, d f can be split into the slip vector ds = (d f · ŝ1)ŝ1 + (d f · ŝ2)ŝ2, which points 
in the rake direction, and the fault opening dn . Dual-porosity or dual-permeability aspects are not considered because the 
fault remains closed, and fluid is not allowed to flow within the fault during the period of analysis. Also, this study focuses 
on a reservoir scale analysis and the local fluid flux jump across the fault is ignored.
4
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2.4. Constitutive relations

Minimization of the free energy of a system, as the system evolves dynamically, is often used to extract the constitutive 
relations applicable to the system. Let ψ be the free energy (per unit reference volume) of the elastoplastic system defined in 
terms of three internal variables: be, Me, and a strain-like internal variable ξ which tracks the isotropic hardening response 
during plastic deformation. The rate of change of free energy can be written in terms of the stress power (τ : d, S : .

E , or 
P : .

F ), the fluid accumulation power, the power of faulting produced by the fault traction vector in realizing the slip across 
the fault, and the internal dissipation:∫

V 0

.
ψdV 0 =

∫
V 0

(
τ : d + χw

.
Mw + χo

.
Mo −D

)
dV 0 +

∫
�0

f

T f · .
d f d�0 (9)

where D = C e S : Lp + h
.
ξ + χw

.
Mp

w + χo

.
Mp

o − Pc�
.
sw ≥ 0 is the local internal dissipation (per unit reference volume) due to 

incremental plastic deformation, hardening, plastic fluid content, and capillarity (due to the surface energy associated with 
fluid interfaces in a multiphase system). Here, Lp = .

F p F p,−1 is the plastic distortion rate, and h is an internal stress-like 
variable related to the internal strain-like variable ξ as h = −∂ψ/∂ξ . Above, we do not include dissipation due to Darcian 
fluid flow, which occurs along the fluid pressure gradient, in D. For reversible processes, D = 0.

The last term above is the rate of work or power of faulting 
.
W f , which can be approximated [34] as 

.
W f ≈ T avg

f × .
davg

f ×
�

slip
f , where T avg

f = (T aft
f + T bef

f )/2 is the average fault stress magnitude, 
.
davg

f = (
.
daft

f + .
dbef

f )/2 is the average fault slip velocity 

magnitude, �slip
f is the fault slip area, and the superscripts bef and aft indicate before and after the slip event. W f can be 

decomposed into three parts: the heat released during slip, energy spent during creation of new material surfaces e.g. in 
the fault process zone, and the seismic radiation energy Es . Ignoring the surface creation energy, which has been found 
to be 3-4 orders of magnitude smaller than the other terms, Es = ηseisW f , where ηseis = (T aft

f − T bef
f )/(T aft

f + T bef
f ) is the 

seismic efficiency. Based on data from many earthquakes, it has been found that ηseis ≤ 0.06 [51]. The moment magnitude 
of the slip event can be obtained from the Hanks-Kanamori scale [52],

Mw = 2

3
log10

(
GW f

T avg
f

)
− 10.7 (10)

It is also important to note that for a given drop in the free energy in Eq. (9), if D increases due to plastic dissipation, the 
energy available for faulting, W f , decreases. Our results in Section 4.3.2 provide further evidence for this hypothesis.

Poromechanics The kinematic or geometric nonlinearity can arise either in the form of large displacement/large rotation 
and large strain or large displacement/large rotation and small strain. Although both cases require the use of second 
Piola-Kirchhoff stress and Green-Lagrange strain tensors in the equilibrium and constitutive equations, modeling the for-
mer requires hyperelastic constitutive relations with large strain constitutive tensors. The latter behavior can be modeled by 
simply substituting σ ′ and ε with S ′ and E , respectively. The small strain constitutive tensor does not change during this 
substitution [53].

In the finite strain theory, the requirement of frame indifference during material response means the material constitutive 
models are expressed in terms of the Lie derivative of the effective Kirchhoff stress, Lvτ ′ . The relation between the total 
and effective stresses in the current configuration becomes

Lvτ
′ = Lvτ + b

.
pe1, (11)

where Lvτ = F
.
S F T is the Lie derivative of the total Kirchhoff stress, Lvτ ′ = F

.
S ′ F T is the Lie derivative of the effective 

Kirchhoff stress, b is the Biot coefficient of the rock fully saturated with water or oil, and pe is the saturation-weighted 
equivalent pore pressure defined as pe = sw pw + so po [54]. We treat the pore pressure derivative as the simple derivative, 
instead of the Lie derivative, given its scalar nature and independence from the coordinate system, so the formulation is 
objective.

The Biot coefficient is a tensor in anisotropic media [55,56]. We assume tensile stresses are positive. In the reference 
configuration Eq. (11) becomes

.
S ′ = .

S + b
.

pe C−1 (12)

The effective stresses are responsible for the deformation of the material. In the current configuration, the rate form of this 
relation is

Lvτ
′ = c : d, (13)
5
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where J−1c is the rank-4 Eulerian elasticity tensor in the current configuration, d = sym[l] is the rate of deformation tensor, 
and l = ∇(∂u/∂t) = .

F F −1 is the gradient of Eulerian velocity vector ∂u/∂t . The stress-strain relation in the reference 
configuration becomes 

.
S ′ = C : .

E where 
.
E = (1/2)

.
C = F T · d · F is the pull-back rule, and C is reference configuration’s 

elastic constitutive tensor related to c as ci jkl = 2Fi A F jB FkC FlD CABC D or F (C : .
C)F T = c : d. The incremental form of the 

pull-back rule provides a relation between the finite and infinitesimal strains as δE = F TδεF . For a homogeneous isotropic 
linear elastic behavior, the elasticity tensor can be split as follows

c =
(

kdr − 2G

3

)
1 ⊗ 1 + 2G I = kdr1 ⊗ 1 + 2G I ′ (14)

where kdr = (1/9)1 : c : 1 is the drained bulk modulus, I is the rank-4 identity tensor, I ′ = I − 1
3 1 ⊗ 1 is the rank-4 

deviatoric operator tensor, and G is the shear modulus. We assume constant elastic moduli and therefore no coupling 
between volumetric and deviatoric responses [40]. Also, we assume that c is independent of sw and Pc . The Biot coefficient 
can be expressed as b = 1 − (kdr/ks), where ks is the solid grain modulus. Applying the trace operator to Eq. (11), we have

Lvτ
′ : 1 = Lvτ : 1 + 3b

.
pe. (15)

Using Eq. (13) and noting tr[d] = d : 1 = .
εv , we obtain

(c : d) : 1 = 3kdr
.

εv = F
.
S F T : 1 + 3b

.
pe, (16)

which resembles the effective stress relation in the infinitesimal formulation once we define, Lv τv = 1
3 F

.
S F T : 1 and Lvτ

′
v =

kdr
.
εv . The rate of deformation tensor can be split into volumetric and deviatoric parts: d = (1/3)

.
εv 1 + .

e, where e is the 
deviatoric strain tensor. The Green-Lagrange strain tensor can be split as 

.
E = (1/3)

.
εv F T F + F T .

e F .
In large displacement, large rotation, but small strain analysis (strain magnitude less than a couple percentages), material 

models developed for the infinitesimal strain analysis can be used directly, provided that σ ′ is substituted with the second 
PK stress tensor S ′ , and ε is substituted with the Green-Lagrange strain tensor E [53]. This is possible because S ′ and E , 
which are energy-conjugates, are invariant under rigid body motions (e.g., rotations of the grid cells of a reservoir/caprock 
layer deforming under fluid production). We apply the trace operator to Eq. (12) to write tr[ .

S ′] = tr[ .
S] +b

.
petr[C−1]. Defining .

S ′
v = tr[ .

S ′], .
Pe = .

petr[C−1], and splitting the strain tensor as 
.
E = (1/3)

.
E v 1 + .

Ed and the stress tensor as 
.
S = .

S v 1 + .
s, we 

have
.

S ′
v = Kdr

.
E v = .

S v + b
.

Pe,
.
s = 2G

.
Ed (17)

where Kdr is defined from C, and s and Ed are deviatoric stress and strain tensors. The first effective stress invariant can be 
defined as I ′1 = 3S ′

v and the second invariant of the deviatoric stress can be defined as J2 = (1/2)s : s. Using Eq. (12), we 
define the fault tractions as follows:

σ ′
n = (F S + bp f C−1) : n̂ f ⊗ n̂ f , τ s = l f − σ ′

nn̂ f (18)

where p f is the fault pressure modeled from the two pressures on the two sides of the fault [16,57].

Multiphase flow To express Eq. (5) in terms of the water phase pressure as the primary variable, we differentiate Mw =
ρw sw� and apply the chain rule:

.
Mw = ρw(�(cw

.
pw sw + .

sw) + .
�sw), (19)

where we introduced the constitutive relation defining the water compressibility in the current configuration as cw =
(1/ρw)dρw/dpw , which allows the water density to be expressed in terms of the water pressure, e.g. ρw = ecw pw . This 
defines the chemical potential of water as χw = ∫ (1/ρw)dpw = ∫ pw

0 e−cw pw dpw . The 
.

Mo term in the oil mass conservation 
equation is similarly expressed in terms of the oil phase pressure po by using the oil compressibility co . We also define the 
saturation-weighted Lagrangian fluid density: ρ0

f = (ρ0
w sw + ρ0

o so).
We assume pressure-dependent fluid viscosities μw and μo . Additional constitutive relations are required for krw , kro and 

Pc . We use Corey-type relation for the relative permeabilities and van Genuchten-type relation for the capillary pressure, 
both of which are expressed as analytical functions of sw (the wetting phase saturation). We discuss the capillary relation 
in more detail in the flow rules section below.

The constitutive equation of poroelasticity states that the fluid mass increment has two contributions, the volumetric 
expansion of the skeleton and the increment in fluid pressure [58],

.
Mw

ρ0
w

= (bw
.
εv + Nw w

.
pw + Nwo

.
po
)
,

.
Mo

0
= (bo

.
εv + Nwo

.
pw + Noo

.
po
)

(20)

ρo

6
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where N = [Nw w , Nwo; Nwo, Noo] = M−1
b is the 2 × 2 inverse Biot modulus matrix in the current configuration. Denoting 

the Biot modulus matrix in the reference configuration as M 0
b , we have Mb = J−1 M0

b . bw = bsw and bo = bso are the fluid-
specific Biot coefficients. Components of the N matrix can be expressed in terms of rock and fluid properties [59,16]. For 
example, for water-saturated conditions (sw = 1) or single-phase flow, Mb = (φcw + (b − φ0)/ks

)−1
.

Fault slip The normal force on the fault is always compressive except when the two sides loose contact at which time the 
normal force becomes zero. Along with the no-interpenetration condition, this implies the following Kuhn-Tucker conditions: 
σ ′

n ≤ 0, dn ≥ 0, σ ′
ndn = 0. We define the stick-slip behavior of the fault in terms of σ ′

n , |τ s|, and the fault friction stress 
τc − μ f σ

′
n , where μ f is the coefficient of fault friction and τc is the fault cohesion. Here, | · | is the magnitude operator or 

Euclidean norm of a vector. We use the Mohr-Coulomb (M-C) stick-slip condition to determine when a point on the fault 
slips. The condition is,

f s = |τ s| − τc + μ f σ
′
n ≤ 0, (21)

i.e., there is no slip until the shear traction magnitude is less than the friction stress, otherwise there is slip and relaxation 
of fault stresses. f s is also known as the Coulomb Failure Function (CFF) in the induced seismicity literature [16]. Tracking 
the change in CFF, as injection or production continues in the reservoir, is a standard method of assessing and mitigating 
the induced seismicity hazard [11,17]. Initial conditions of a simulation are chosen such that all points on the surface of the 
fault satisfy the above condition. As the reservoir pressure and stress change with the well operation, |τ s| and σ ′

n change on 
the fault. If the changes are destabilizing, e.g. increasing shear and/or decreasing compression, the condition is violated and 
the fault slips. We define the hypocenter as the fault node where the M-C condition is violated earliest in time. We use the 
slip-weakening relation to capture the rapid drop in μ f immediately after the onset of slip, which is commonly observed 
in earthquakes [34]. Slip weakening allows the fault friction coefficient to decrease from its static value μs to a dynamic 
value μd over the critical slip distance dc .

μ f =
{
μs − (μs − μd)

|ds|
dc

, |ds| ≤ dc,

μd, |ds| > dc .
(22)

Poroplasticity Assuming an isotropic response and using τ ′ = F e S ′ F e,T, the hyperelastic constitutive relation can be written 
in terms of be and either τ ′ or S ′ as

τ ′ = 2
∂ψ

∂be be, S ′ = 2F e,−1 ∂ψ

∂be F e (23)

To completely specify a poro-elastoplastic problem, three components are needed–a yield condition, flow rules based on a 
plastic potential, and a hardening or softening rule. The yield condition specifies the state of stress at which plastic flow 
initiates, and the potential function is used to determine the magnitude and direction of plastic strain and other internal 
state variables such as the plastic porosity. The yield condition is generally written in the following form

f p (S, pe, Pc,h) = f p
(
τ ′, Pc,h

)≤ 0. (24)

The potential function for drained plastic flow is given in the form

gp (S, pe, Pc,h) = gp
(
τ ′, Pc,h

)≤ 0. (25)

A non-associative model ( f p �= gp) ensures that the direction of plastic strain rate vector is not perpendicular to the yield 
surface. Non-associated models can address the issue of unreasonable amounts of dilatation that are sometimes predicted 
by the associated model ( f p = gp ), which is based on the assumption of maximum plastic dissipation. In multiphase ge-
omechanics, non-associativity often arises from the commonly-used models for the capillary pressure-saturation relation.

2.4.1. Flow rules
To determine the amount and direction of plastic deformation (plastic flow rule) in large displacement/rotation–large 

strain, first we look at the material time derivative of be:
.

be = lbe + bel +Lv be (26)

where l = le + lp with le = .
F e F e,−1 and lp = F e Lp F e,−1. The Lie derivative of the strain is

Lv be = F
dC p,−1

dt
F T = F

d

dt

[
F −1be F −T

]
F T = −2F esym[Lp]F e,T. (27)

Maximization of the dissipation D resulting from Eq. (9) provides us with the flow rules for the plastic volumetric strain 
and plastic mass content [38]. The former is
7
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−1

2
(Lv be)be,−1 = .

λ
∂ gp

∂τ ′ (28)

where 
.
λ is the plastic multiplier and ∂ gp/∂τ ′ is the gradient tensor of the plastic potential function with respect to the 

effective Kirchhoff stress. The incremental plastic volumetric strain can be computed as

.
ε

p
v =

.
J p

J p =
.

F p : F p,-T = .
F p F p,−1 : 1 = tr[Lp] (29)

The elastoplastic tangent modulus cep can be obtained from .
τ ′ = c : (d − .

λ∂ gp/∂τ ′) = cep : d. Associative plasticity models 
guarantee that the elastoplastic tangent tensors are symmetric.

Flow rule for plastic fluid mass increments can also be obtained from the dissipation maximization principle. For the 
water phase, we obtain

.
Mp

w = ρ0
w

.
λ

∂ gp

∂ pw
= −bswρ0

w

.
λ

(
∂ gp

∂τ ′ : 1
)

(30)

where it is the assumed that the fluid compressibility over a time increment is small. Substituting sequentially from Eq. (28), 
Eq. (27), and Eq. (29), we obtain

.
Mp

w = bswρ0
w

1

2
(Lv be)be,−1 : 1 = bswρ0

w
.
ε

p
v ,

.
ε

p
v = .

λ · tr

[
∂ gp

∂τ ′

]
(31)

Flow rule for .
sw can be written in terms of the plastic multiplier and the gradient of the yield function with respect to 

Pc , .sw = − .
λ(∂ f p/∂ Pc), which can be written as .sw = (∂sw/∂ Pc)

.
Pc . Another candidate formulation is

.
sw = ∂sw

∂ J

.
J + ∂sw

∂ Pc

(
.
Pc +

.
J

J
Pc

)
, (32)

which makes the capillary pressure a function of deformation: εv and φ. As mentioned above, we use a van Genuchten-
type relation that qualifies as a non-associative flow rule for .

sw . However, following [58], we assume that the effect of 
deformation on the capillary relation is negligible by neglecting the 

.
J terms. This makes our relative permeability relations, 

krw and kro vs. sw , also independent of deformation.
The evolution of plastic multiplier is subject to the Kuhn-Tucker loading/unloading conditions:

.
λ ≥ 0, f p ≤ 0,

.
λ f p = 0, (33)

and the consistency condition,
.
f p(S, pe, Pc,h) = 0, (34)

based on which we obtain

.
λ = (∂ f p/∂τ ′) : c : l

(∂ f p/∂τ ′) : c : (∂ gp/∂τ ′)
. (35)

For large displacement/rotation–small strain, we use the plastic flow rule written in terms of S ′:

.
εp = .

λ
∂ gp

∂ S ′ , (36)

and the plastic volumetric strain is calculated from its trace. The elastoplastic tangent modulus Cep is defined as 
.
S ′ = C :

(
.
E − .

εp) = Cep : .
E .

Finally, the hardening rule can be written as 
.
h = .

λ∂ gp/∂ξ . The hardening rule describes how the yield condition and 
flow rule are modified during plastic flow. For no hardening and perfectly plastic material, the yield condition and flow rule 
remain constant during plastic flow.

2.4.2. Drucker-Prager model
We consider the Drucker-Prager (D-P) elastoplastic model [42] to describe the behavior of reservoir and caprock under 

flow-induced loading. The D-P yield surface, which is a smooth approximation of the M-C yield surface for continuum 
modeling of yielding in 3D, has been used in the literature to model plastic deformation of soils and rocks. For large 
displacement/rotation–small strain, the model can be written in terms of S ′ and E [53]. We define a yield condition for 
perfect plasticity and with capillarity as follows

f p (S, Pc, pe) = α f (S v + β Pe) +√ J2 − γ − ζ Pc ≤ 0, (37)
8
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and the plastic potential is given by

gp(S, pe) = αg(S v + β Pe) +√ J2, (38)

where α f , αg , β , γ , and ζ are model constants. Here, β accounts for the plastic volumetric strain of the solid matrix 
(φ0 ≤ β ≤ 1) and can be assumed equal to the Biot coefficient [58]. A ζ > 0 value can extend the yield surface to the 
tensile region and allow tensile failure. To calculate increments in plastic strain and plastic fluid mass, we need gradients of 
functions f p and gp . Note that

df p = ∂ f p

∂ S
: dS + ∂ f p

∂ pe
dpe. (39)

Substituting Eq. (38) in Eq. (36), we obtain the rates of increment in plastic strain and fluid mass of slightly compressible 
fluids,

.
εp = .

λ

(
αg

3
1 + 1

2
√

J2
s

)
,

.
Mp = .

λαgβρ0
f . (40)

2.5. Effect of finite strain plasticity on the flow problem

It is important to understand the effect of plastic strain on the solution of the flow problem, especially within an iterative 
solution scheme where the flow and mechanics problems are solved sequentially. Therefore, we can re-write the fluid mass 
increment Eqs. (20) explicitly in terms of the plastic strain. For example, for water,

.
Mw = ρ0

w

⎡
⎣ ∑

N=o,w

(
bwbN

kdr
+ NwN

)
.

pN + bw

kdr
Lvτv + bw

.
ε

p
v

⎤
⎦ , (41)

which can be combined with Eq. (19) to obtain the porosity evolution equation,

1

J

.
� = b

kdr
Lvτv +

∑
N=o,w

(
b2sN

kdr
+ (b − φ0)sN

ks

)
.

pN + b
.
ε

p
v (42)

Substituting Eq. (41) in Eq. (5) gives us the water phase equation:

∑
N=o,w

(
bwbN

kdr
+ NwN

)
.

pN + bw

kdr
Lvτv + bw

.
ε

p
v + 1

ρw
∇ · w w + qw

ρw
= 0, (43)

which is analogous to the pressure equation under infinitesimal deformation (Eq. (30) in [16]). The oil phase equation is 
obtained similarly. For large displacement/rotation–small strain, Lvτv is substituted with 

.
S v , and kdr is substituted with Kdr . 

This suggests that the fixed stress iterative solution scheme for infinitesimal deformation can be extended to finite strain 
plasticity by fixing 

( .
S v , .εp

v
)

during the solution of the flow problem.

3. Numerical model

Below we present the numerical solution model for the problem described in the previous section. First, we present 
the weak forms of the mechanics and flow sub-problems while accounting for finite strain plasticity and fault slip. Next, 
we linearize the equations that need to be solved to simulate the dynamics of fluid flow, finite strain geomechanics, and 
fault slip processes in the domain. Then we describe our sequential iterative solution strategy which entails solving the 
flow problem in a Newton loop while freezing the variations in the total volumetric stress and the volumetric plastic strain, 
followed by solving the mechanics problem in another Newton loop while freezing the fluid pressure and saturations.

3.1. Weak forms

The weak form of Eq. (6) in Lagrangian coordinates is obtained by following the standard variational recipe: take the dot 
product of the strong form with a test function η belonging to a suitable space of vector functions (zero for the material 
points on the prescribed displacement boundary of the body), integrate over the reference volume, use integration by parts, 
and apply the divergence theorem. The result is [60],∫

V 0

P : ∇Xη dV 0 =
∫
0

T · η d�0
σ +

∫
V 0

ρ0
b g · η dV 0 (44)
�σ

9
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where �0
σ is the Neumann (traction) boundary in the reference configuration, T = Pn̂ is the prescribed traction vector 

on that boundary, and n̂ is the outward unit normal to the boundary. Prescribed displacement and prescribed traction 
boundaries do not overlap and their union equals the complete boundary. For time-dependent tectonic boundary conditions, 
Eq. (44) can be written in the rate form with 

.
P = (

.
F S + .

S F ) in place of P . Since we consider constant boundary conditions 
and use a sequential iterative solution scheme where pressure is frozen during mechanics solve (details below), the weak 
form in Eq. (44) is sufficient. Since S is symmetric, we have P : ∇Xη = S : sym[∇Xη · F T]. Defining the virtual strain as 
δE = sym[∇Xη · F T], where the variation δ is taken about the current configuration, we can write the weak form as∫

V 0

(S ′ − bpe C−1) : δE dV 0 =
∫
�0

σ

T · η d�0
σ +

∫
V 0

ρ0
b g · η dV 0. (45)

The left hand side above is the internal virtual work and the right hand side is the external virtual work. The traction conti-
nuity equation across the fault, T +

f = T −
f , contributes two surface integral terms to the internal virtual work, corresponding 

to tractions on �+ and �− sides of the fault [16]:∫
V 0\� f

(S ′ − bpe C−1) : δE dV 0 +
∫
�0+

ηT(l f − bp f F −Tn̂ f ) d�0 (46)

−
∫
�0−

ηT(l f − bp f F −Tn̂ f ) d�0 −
∫
�0

σ

T · η d�0
σ −

∫
V 0

ρ0
b g · η dV 0 = Ru = 0,

where p f is the fault pressure related to the pressures on the two sides of the fault [16], e.g. footwall and hanging wall block 
pressures in case of a dip-slip fault, and Ru is the mechanics residual. We use the Lagrange multiplier method to impose 
contact forces at the fault that are required to honor the stick-slip condition. As a result, the Lagrange multipliers acquire 
the physical meaning of the fault tractions l f defined in Eq. (18). Also, they become unknowns of the problem, similar to 
the displacements. We use piecewise linear displacement test functions with nodal displacement degrees of freedom (d.o.f.) 
U and piecewise linear fault traction test functions with traction d.o.f. L f on the Lagrange (fault) nodes to discretize the 
mechanics weak form. In this study, we use a trilinear hexahedral finite element mesh with bilinear quadrilaterals on the 2D 
fault surface. The residual is evaluated at each integration point in each element. The weak form of the fault slip equation, 
Eq. (8), is∫

�+

η · u+d� −
∫
�−

η · u−d� −
∫
� f

η · d f d� = Rl = 0, (47)

where Rl is the fault residual evaluated at the Lagrange (fault) nodes. The fault slip is discretized using the same test 
functions as the fault traction. We denote the slip d.o.f. by D f .

The weak form of the multiphase flow problem is obtained by applying the same variational recipe to water and oil 
mass conservation equations. For water, Eq. (5) gives∫

V 0

.
Mwηp dV 0 −

∫
�0

w

W ηp d�0
w −

∫
V 0

J w w · ∇ηp dV 0 +
∫

V 0

Jqwηp dV 0 = R w = 0, (48)

where ηp is the pressure or saturation test function (zero on the fixed pressure boundary), W = J F −1 w w · n̂ is the pre-
scribed normal mass flux on the flux boundary �0

w in the reference configuration, and R w denotes the residual for the 
water equation. The internal flux term is expressed in terms of the product of the fluid phase mobility kkrw/μw and the 
phase pressure gradient pw using Darcy’s relation. Similarly, we have the weak form of the oil phase, which we write in the 
residual form as Ro = 0. We use the finite volume method to discretize the weak forms of the flow problem using piecewise 
constant ηp (∇ηp = 0) and element-centered d.o.f. for the oil phase pressure Po and the water phase saturation S w . P w

is obtained from the capillary pressure relation, and So is obtained from the saturation constraint. We use backward Euler 
time integration method to discretize the time derivative of fluid mass. We evaluate Ro and R w for each mesh element.

3.2. Mechanics model

We use the Total Lagrangian method [53] to linearize the mechanical equilibrium equations. Denoting the body configu-
ration at tn+1 as xn+1 = xn + du, the incremental decomposition relations are,

S ′ ,n+1 = S ′ ,n + dS ′, En+1 = En + dE, un+1 = un + du (49)

The deformation gradient at tn+1 can be written as
10
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F n+1 = ∂xn+1

∂ X
= ∂xn

∂ X
+ ∂du

∂xn

∂xn

∂ X
= [1 + ∇xn du] F n = f n+1 F n (50)

where f n+1 = 1 + (∂du/∂xn
)

is known as the relative deformation gradient [60,54]. From the definition of the incremental 
strain [53],

dE = sym
[∇X du + (∇X un)(du∇X )

]+ 1

2
(∇X du)(du∇X )

= dEL + dENL (51)

where dEL is the linear part of the incremental strain (linear in du) and dENL is the nonlinear part. Noting that δEn = 0, 
the integrand in the stiffness term on the left hand side of Eq. (46) can be linearized as follows

S ′ ,n+1 : δEn+1 = dS ′ : δdE + S ′ ,n : δdENL + S ′ ,n : δdEL (52)

≈
(

∂ S ′ ,n

∂ En : dEL

)
: δdEL + S ′ ,n : δdENL + S ′ ,n : δdE L

where second and higher order du terms have been dropped from the Taylor expansion of the first term, the second term is 
already linear because δdENL is linear in du, and the third term is independent of du. Linearization of the mechanics weak 
form gave rise to the algorithmic tangent operator, ∂ S ′ ,n/∂ En , which we denote by Dn . It replaces the constitutive elasto-
plastic tensor (cep in large deformation–large strain or Cep in large deformation–small strain) and ensures that Newton’s 
method for the mechanics solver can converge quadratically when close to the solution [60,61]. In Appendix, we provide 
the expression for D for our Drucker-Prager elastoplastic material. Discretization results in dEL = Bn

LdU and dENL = BNLdU , 
where BL and BNL are linear and nonlinear strain-displacement matrices. The linear strain-displacement matrix contains 
products of the shape function derivative and un , and hence has a superscript n. Strain variations are discretized similarly.

The discrete linear system of the mechanics problem now has two types of unknowns: the displacement d.o.f. U at the 
displacement nodes and the fault traction d.o.f. L f at the fault nodes. We solve the system using Newton’s method. Eqs. (49)
and (52) are written with (k) and (k + 1) substituting for n and n + 1, i.e. [U , L f ](k+1) = [U , L f ](k) + [dU , dL f ], where (k)

is the Newton iteration counter at tn+1, and the correction vector is the solution to the system of linear equations:[
K C T

l
C l 0

](k) [
dU
dL f

]
= −

[
Ru

Rl

](k)

, (53)

where the stiffness matrix K and the direction cosine matrix C l , which converts from the global coordinate system to the 
fault coordinate system, are obtained via element-by-element assembly of the nodal contributions from the displacement 
nodes and the fault nodes. Ru = [Ru] and Rl = [Rl] are vectors of residuals. The element stiffness matrix for element i is 
obtained as follows:

K (k)
i = ∂ R(k)

u,i

∂U (k)
i

=
∫

V 0

(
B(k),T

L,i D(k)
i B(k)

L,i + B(k),T
NL,i S ′ ,(k)

i B(k)
NL,i

)
dV 0 (54)

which has a linear part with the elastoplastic tensor and a nonlinear part with the stress tensor S ′ ,(k)
i . The third term in 

Eq. (52) becomes S ′ ,(k) : δE(k) , which is known and does not contribute to the stiffness matrix but appears as B(k)
L,i S ′ ,(k)

i

in R(k)
u,i . The pore pressure term in Eq. (46) does not contribute to the stiffness matrix because we freeze the pressure 

during the mechanics solve as per the sequential iterative solution scheme mentioned earlier. In Newton’s method, an 
error in the residual implies convergence to an incorrect solution and an error in the system Jacobian implies a slower 
rate of convergence. Since S ′ is inside Ru , the stress path must be evaluated accurately during the simulation otherwise 
the simulation will diverge away from the true solution. Eq. (53) is a saddle point problem resulting from the use of the 
Lagrange multiplier method to solve the fault contact problem. To solve this system, we use the field split preconditioner 
option in PETSc [62,63], which allows us to use two different preconditioners for the elasticity and the fault sub-blocks. 
We use an algebraic multigrid preconditioner for the former and an approximation of the Schur complement of K for 
the latter [63]. The Schur complement is −C l K −1C T

l and it is approximated with a sum of two terms corresponding to 
displacement nodes on the positive and negative sides of the fault [63]. Since only fault side nodes are involved, the Schur 
approximation is fast to compute.

3.2.1. Poroplastic model
Large displacement/rotation–large strain First, we describe the model for large displacement, large rotations, and large strain, 
which may be more applicable to reservoirs with small aspect ratios (similar dimensions in different principal stress di-
rections) and brittle rocks. The left Cauchy-Green tensor at tn is calculated as be,n = F e,n F e,T,n . Then Eq. (23) is used to 
11
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evaluate τ ′ ,n . An elastic predictor–plastic corrector scheme, which is a type of return-mapping algorithm [38,54], is used to 
solve the elastoplastic problem and determine be,n+1, τ ′ ,n+1, and S ′ ,n+1. The predictor step gives the trial state as

be,tr = f n+1be,n f n+1,T, τ ′ ,tr = 2be,tr(∂ψ/∂be,tr), Mp,tr = Mp,n. (55)

where Pc is assumed constant because we freeze pore pressures during the mechanics solve. If the yield condition is 
satisfied with the trial state, i.e. f tr

p < 0, we have zero plastic flow during this time step and be,n+1 = be,tr , Mp,n+1 = Mp,tr . 
If the condition is not satisfied, we have plastic flow and the corrector step calculates the correction to be added to be,tr . 
This correction, as per Eq. (26), is the Lie derivative of be,n+1:

Lv be,n+1 = −2
.
λ

3∑
i=1

∂ g

∂τ ′
i

θ
e,n+1
i mi, where mi = ni ⊗ ni, (56)

θ
e,n+1
i are the three principal values (eigenvalues) of be,n+1 obtained from the spectral decomposition: be,n+1 =∑i θ

e,n+1
i mi , 

τ ′
i are the principal values of τ ′ ,n+1, and ni are the principal directions or eigenvectors (same for both the stress and strain 

tensors). The logarithmic principal stretches εi , which are physically meaningful and measurable quantities, are related to 
θi as εi = 1

2 log θi . Integrating Eq. (56) in its principal form over the time step dt with integration limits (tn, εe,tr
i ) and 

(tn+1, εe,n+1
i ) gives us the corrected values,

εe,n+1
i = εe,tr

i − dλ · ∂ gp

∂τ ′
i

∣∣∣∣
n+1

, i = 1,2,3, (57)

where dλ is calculated using the discrete consistency condition f n+1
p = 0. be,n+1 and τ ′ ,n+1 are now updated. The plastic 

mass is updated as [38],

Mp,n+1 = Mp,tr + bρ0
f log

(
Jn+1 J e,n

J e,n+1 Jn

)
(58)

The updated stress is used to re-evaluate the yield condition, which determines whether an additional iteration of the 
predictor-corrector scheme is necessary.

Large displacement/rotation–small strain Next, we describe the model for large displacements/large rotations, but small 
strains [53]. This may be more appropriate for laterally extensive (large aspect ratio) reservoirs and some ductile rocks 
deforming under the well operation. Here, the small strain feature can be exploited to replace the iterative predictor–
corrector scheme with analytical expressions for the plastic multiplier and the elastoplastic stress, which change within the 
Newton loop of the mechanics solver. This provides computational efficiency. From Eq. (40), the volumetric and deviatoric 
parts of the plastic strain tensor are

dε
p
v = αgdλ, dep = dλ

1

2
√

Jn+1
2

sn+1, (59)

and Eq. (40) provides the incremental fluid mass due to plastic strain as

dMp = ρ0
f αgβdλ (60)

Given the plastic yielding at tn+1, we need to update the elastoplastic stress. First, we obtain an explicit algebraic expression 
for the plastic multiplier. Using the volumetric-deviatoric stress split from Eq. (17) and the incremental form in Eq. (49), we 
write:

sn+1 = 2G
(
dEd − dep)+ sn

Sn+1
v = Kdr

(
dE v − dε

p
v
)− bdPe + Sn

v (61)

Substituting Eq. (59) into Eq. (61),⎛
⎜⎝1 + Gdλ√

Jn+1
2

⎞
⎟⎠ sn+1 = 2GdEd + sn, (62)

Sn+1
v = Kdr

(
dE v − αgdλ

)− b
(

Pn+1
e − Pn

e

)+ Sn
v . (63)

Taking the scalar product of both sides of Eq. (62),
12
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⎛
⎜⎝1 + Gdλ√

Jn+1
2

⎞
⎟⎠

2

sn+1 : sn+1 = 4G2dEd : dEd + 4Gsn : dEd + sn : sn (64)

Using the definition of Jn+1
2 and Jn

2,

⎛
⎜⎝dλ +

√
Jn+1

2

G

⎞
⎟⎠

2

= 2dEd : dEd + 2

G
sn : dEd + Jn

2

G2
. (65)

Defining the right hand side of the above equation as (rn+1)2, we obtain the plastic multiplier as

dλ = rn+1 −
√

Jn+1
2

G
(66)

Substituting Sn+1
v from Eq. (63) and Jn+1

2 from Eq. (66) in the discrete consistency condition f n+1
p = 0 provides us the final 

expression for the plastic multiplier

dλ = α f
(

KdrdE v + Pn+1
e (β − b) + Sn

v + bPn
e

)+ rn+1G − γ

Kdrα f αg + G
. (67)

Assuming β = b means the role of pore pressure is limited to knowing the effective stress at nth time step, Sn
v + bPn

e . Once 
we have the plastic multiplier, we calculate the stress and strain as follows. Substituting Jn+1

2 from Eq. (66) into Eq. (59)
results in

sn+1 = dep 2G(rn+1 − dλ)

dλ
, (68)

which when substituted into Eq. (62) gives us the expression for the deviatoric plastic strain increment

dep = dλ

rn+1

(
de + sn

2G

)
(69)

dε
p
v can be updated using Eq. (59) and S v can be updated using Eq. (63) (recall that Pn+1

e is available from the solution of 
the flow problem at the current sequential iteration). For large positive values of S v , e.g. when the rock is under tension 
such as during hydraulic fracturing, dλ can be too large making it difficult to project the stress back to the yield surface. 
In fact, if dλ > rn+1, then Eq. (66) implies 

√
Jn+1

2 < 0, which is not physical. We address this issue by calculating dλ as the 
minimum of rn+1 (equivalent to assuming Jn+1

2 = 0) and the value obtained by Eq. (67).

3.2.2. Fault slip model
The fault tractions L f are additionally constrained by the M-C slip condition, Eq. (21). When the condition is violated at 

a fault node, the fault slip D f is incremented. This is achieved by solving the mechanics problem in a loop:

1. The system of equations Eq. (53) is solved, which accounts for the nonlinearities due to finite strain and plasticity, as 
described above.

2. The fault tractions L(k)

f are used to check the slip condition Eq. (21) and perturbation to the tractions are calculated for 
the fault nodes violating the condition.

3. Two local equilibrium equations, extracted from the top row of Eq. (53), are solved at positive and negative side fault 
nodes to calculate adjustment in U +,(k) and U −,(k) corresponding to the traction perturbations. The local equilibrium 
equations are smaller in size than the global system and hence solved using a direct solver.

4. Adjustments in the displacements are used in Eq. (8) to compute the slip increment.
5. If the slip increment is below a threshold, exit the loop. Otherwise, go back to step 1 above with the updated slip in 

Rl .

See Eqs. (76)-(78) in [16] for the detailed algorithm. Our framework is also capable to model fault gouge zone. This will 
require choosing the thickness of fault gauge zone and assign different friction angle, dilation angle and cohesion to the 
gauge zone cells from other grid cells.
13
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3.3. Flow model

The global mass conservation statements for oil and water (Eq. (48)) phases are written for each element in the mesh. 
The surface integral term with outward normal flux W becomes a summation of outward normal fluxes over all the faces 
of an element. The discrete flux W ij for face i j between element i and element j is approximated using a nonlinear 
two-point flux approximation (TPFA) [64], which expresses the flux in terms of the element pressures Pi and P j , the face 
transmissibility, and the fluid phase mobility ρNkrN/μN . The face transmissibility depends on the permeabilities ki and k j , 
element sizes, angles between the face normal vector and the vector connecting the element barycenters as well as on the 
pressures of the neighboring elements. The dependence on pressure renders the flux approximation scheme nonlinear and 
applicable to the full tensor permeability field that arises during a finite strain simulation, even when the initial permeability 
field is isotropic.

The flow problem is nonlinear due to pressure-dependent fluid compressibility and viscosity and, in case of multiphase 
flow, saturation-dependent relative permeability and capillary pressure relations. We use Newton’s method to linearize 
the flow problem in terms of the vector of element-centered pressure and saturation increments. For two-phase oil-water 
system, denoting the oil pressure increment as dP o and the water saturation increment as dS w , the linear system is[

∂ Ro
∂ P o

∂ Ro
∂ S w

∂ R w
∂ P o

∂ R w
∂ S w

](k) [
d P o

dS w

](k)

= −
[

Ro

R w

](k)

, (70)

where k is the Newton iteration counter. See [16] for details. Nonlinear TPFA gives rise to pressure-dependent transmissi-
bilities, as mentioned above. We assume the transmissibilities to be frozen within a time step, which introduces sparsity in 
the Jacobian matrix of Eq. (70) at the cost of a small reduction in the convergence rate. Following the sequential iterative 
solution scheme mentioned earlier, we freeze the incremental total volumetric stress (dS v ) and the incremental volumet-
ric plastic strain (dε

p
v ) to their respective values at the previous sequential iteration. Therefore, their contributions to the 

Jacobian matrix blocks is zero.

3.4. Sequential iterative solution strategy

Given the solutions at time step n, we use a sequential iterative scheme to solve the coupled flow-geomechanics problem 
at time step n + 1. This approach, which is similar to our approach in the infinitesimal strain model [16], is as follows. At 
sequential iteration s +1 of time step n +1, we solve the discrete flow system for element-centered pressures and saturations 
(Pn+1,s+1

o , Sn+1,s+1
w ) using Newton’s method, while fixing dS v = Sn+1,s

v − Sn
v and dε

p
v = ε

p,n+1,s
v −ε

p,n
v . We use a block GMRES 

solver with Block Incomplete LU (BILU) preconditioner to solve the system. Next, we solve the discrete mechanical system for 
nodal displacement d.o.f. U n+1,s+1, element-averaged internal variables εp,n+1,s+1

v and Mp,n+1,s+1, and fault-nodal traction 
d.o.f. Ln+1,s+1

f and slip d.o.f. Dn+1,s+1
f while assuming that the flow solution is fixed at (Pn+1,s+1

o , Sn+1,s+1
w ). The mechanics 

problem is strongly nonlinear. The nonlinearity due to finite strain and plasticity is addressed via Newton’s method and 
an iterative return mapping algorithm in case of large strains, and the nonlinearity due to fault slip is addressed via an 
inner loop over the mechanics problem. We use PETSc’s field split AMG preconditioner with a GMRES linear solver [62,
65]. Convergence of the entire solution is checked by comparing the norm of the solutions at s and s + 1 iterations. If 
not converged, the sequential loop continues for another iteration over the two solvers–flow and geomechanics–until a 
converged solution, (U n+1, Ln+1

f , Dn+1
f , Pn+1

o , Sn+1
w ), is achieved [16]. Depending on the strength of coupling between the 

flow and mechanical processes and the strength of nonlinearities within each problem, the number of sequential iterations 
required for convergence at a time step varies with time.

Algorithm 1: Sequential iterative solution strategy.

Result: Pressure, saturation, stress, strain and displacement
Initialization
while time step n < N do

Sequential counter s = 0
while Not converged do

s = s + 1
Solve flow problem Eq. (70)
Solve mechanics problem Eq. (53)
if f tr

p ≤ 0 then
Compute plastic strain tensor

else
Continue

end
end

end
14
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Fig. 3. The Mandel problem. (a) Model geometry with boundary conditions. The observation point A is shown in a black circle. The observation line 
A’A is shown in dash line. (b) Comparison of dimensionless pressure vs. time from the numerical simulation and analytical solution. (c) Comparison of 
displacement vs. time from the numerical simulation and analytical solution.

4. Representative numerical simulations

We verify our numerical framework and its implementation by simulating the Mandel and the rigid footing consolidation 
problems. Then we simulate production-induced fault slip in an oil reservoir to answer the questions posed in the beginning, 
(1) how plasticity affects the onset time, location and magnitude of slip events, and (2) how rock’s elastic moduli affect this 
coupling.

4.1. The Mandel problem

We solve Mandel’s biaxial consolidation problem to test the accuracy of the mechanics-to-flow coupling in our coupled 
geomechanics simulator. See the model in Fig. 3a. A uniform and constant compression of 2 MPa is applied on the left 
boundary of the model. The right and bottom boundaries are fixed and no-flow, while the top boundary is a traction-
free drained boundary with the excess pressure set at p=0. We choose the following model properties: model dimensions 
Lx × L y = 50 × 10 m2, compression 2 MPa, drained Young’s modulus E = 100 MPa, drained Poisson ratio ν = 0.3, Biot 
coefficient b = 0.9, initial porosity φ(t = 0) = 0.2, initial permeability k = 9.869 × 10−14 m2, and fluid viscosity μ = 1
cp. We can express these moduli in terms of the moduli used in the numerical model above: E = 9Kdr G/(3Kdr + G) and 
ν = (3Kdr − 2G)/(2(3Kdr + G)). We select the point near the right bottom corner as our observation point to investigate the 
evolution of pressure and displacement with time (Fig. 3b, c). In the Mandel problem, the flow and mechanics processes 
are two-way coupled to each other and the mechanics-to-flow coupling leads to the well-known Mandel-Cryer effect [66]
where the pore pressure (Fig. 3b) and the vertical displacement (Fig. 3c), away from the drained boundary, rise at early 
times, before continuing to decline due to drainage.

To understand the effect of plasticity, we conduct two simulations with two different material models: a Drucker-Prager 
(DP) material and an elastic (EL) material. Material properties are as follows: drained Young’s modulus E = 100 MPa, drained 
Poisson’s ratio ν = 0.3, Biot’s coefficient b = 0.9, α f and αg = 0.0562, γ = 1.5 MPa. We plot the evolution of vertical stress, 
strain, and stress invariants in Fig. 4, and the evolution of vertical displacement and pressure in Fig. 5. During early times, 
both the total compressive stress and the pore pressure rise due to the Mandel-Cryer effect. The first invariant I ′1 is nearly 
constant at 4 MPa as the second invariant 

√
J2 is rising from 1.15 to 1.27 MPa. Fig. 5a and b also show that the deformation 

and pressure evolve almost identically during early times. During intermediate times, once the pressure depletion effect 
of drainage reaches the observation point, I ′1 starts to decrease faster. 

√
J2 continues to increase throughout the drainage. 

When the plastic yield criterion is satisfied (stress path touching the straight blue line), plastic flow begins and the material 
deforms along the yield line as long as the deviatoric stresses are large enough. Plastic strain begins and the total strain is 
larger in the plastic simulation compared to the elastic simulation. Plastic dilatancy leads to a higher consolidation (higher 
u y) and a lower excess pressure in the plastic material compared to the elastic material (Fig. 5), which agrees with the 
observations reported in literature [38]. At later times, the stress state returns to the elastic region (below the yield line 
Fig. 4c) because I ′ decreases faster due to pressure depletion than the rate of increase in 

√
J2.
1
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Fig. 4. Time evolution of the (a) vertical stress, (b) vertical strain and (c) evolution of the stress state at the observation point A in Fig. 3a. Vertical plastic 
strain (blue dot line) starts to increase and the elastic simulation (EL, dash line) shows higher vertical stress and lower vertical strain than Drucker-Prager 
plastic simulation (DP, solid line) after stresses reach the yield line (blue line). (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Fig. 5. Time evolution of (a) vertical displacement and (b) dimensionless pressure at the observation point A. Elastic simulation (EL, dash line) shows lower 
vertical displacement and higher pressure than Drucker-Prager plastic simulation (DP, solid line) after plastic failure initiates. (c) Profile of vertical strain 
along AA’ at t=0.02 day. Vertical strain decreases from point A to A’. Total vertical strain from DP simulation (solid line) is higher than that from EL 
simulation (dash line) in the cells that have plastic failure (dot line).

Fig. 6. The rigid footing problem. (a) Model geometry with boundary conditions. The observation point, shown as a red dot, is below the footing. (b) 
Comparison of finite strain and infinitesimal strain simulations for two types of rocks: weak (E = 127 MPa) and strong (E = 254 MPa). (c) Number of 
sequential iterations for convergence between flow and mechanics problems in finite and infinitesimal strain simulations for strong rock (E = 254 MPa).

4.2. The rigid footing problem

The problem deals with a water-saturated rock layer subjected to a strip footing load on the top boundary that increases 
with time. Because of the axisymmetry of the problem, we only need to consider the right half of the domain (Fig. 6a). All 
the boundaries are set to no-flow boundaries except the top boundary, which allows water to drain as the layer compacts. 
A load F (Newton per meter) that increases in time at a constant rate is applied over the footing length L. Model properties 
are as follows: L = 5 m, compression increases from 0 with a loading rate of 165 Pa/sec, drained Poisson’s ratio ν = 0.3, 
Biot coefficient b = 1, initial porosity φ(t = 0) = 0.2, homogeneous isotropic initial permeability (k(t = 0) = k1) with k =
9.869 × 10−13 m2 (1 darcy), fluid viscosity μw = 1 cp, friction angle of 30 degree, dilation angle of 0, and γ = 0.127 MPa. 
The model has 40 × 50 mesh elements. We select a point below the top boundary as our observation point where we plot 
compression versus displacement (Fig. 6b).
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Fig. 7. Results from finite strain (a to c) and infinitesimal strain (d to f) simulations. (a) Overpressure, (b) vertical displacement (exaggerated by a factor of 
20), and (c) plastic strain magnitude at t = 0.2 day.

Using the same model, we compare the results from finite strain and infinitesimal strain simulations for two types of 
rocks: weak (E = 127 MPa) and strong (E = 254 MPa), while keeping other parameters the same. Deformation is smaller 
in the stiffer rock, as shown in Fig. 6b. The larger consolidation experienced by the weaker rock is correctly modeled in 
the finite strain simulation compared to the infinitesimal strain, a result that agrees with literature (see Fig. 10 in [67]
and Fig. 10 in [45]). For the same footing load, the compaction is larger in the finite strain simulation. Also, the difference 
between finite and infinitesimal curves increases as the consolidation process continues. In Fig. 6c, we show the difference 
between the number of sequential iterations for convergence between flow and mechanics problems in the finite and 
infinitesimal strain simulations. As the plastic strain magnitude increases, both simulations need more iterations to converge. 
Since the plastic deformation is delayed in the infinitesimal strain model, its number of iterations lag behind that of the 
finite strain model.

We plot the spatial profiles of pressure, displacement and plastic strain magnitude from finite strain and infinitesimal 
strain simulations for the case with strong (E = 254 MPa) rock as shown in Fig. 7. Pressure increases under compression 
except the drained top boundary where pressure remains unchanged. We observe negative displacement u y in the area 
under compression and smaller positive displacement in other area. Plastic failure initiates on the compression boundary 
and propagates downwards. The border between the compression boundary and the flow boundary has the highest plastic 
strain because of high Sxy in the finite strain simulation or σxy in the infinitesimal strain simulation. This serves as a 
barrier and creates a failure zone. The comparison between finite strain and infinitesimal strain simulations shows that the 
finite strain model can capture the higher overpressure, larger displacement and plastic strain magnitude resulting from the 
footing load in this case.

4.3. Production-induced plastic failure and fault slip

Motivated by the setup in Fig. 1, we create a 3D geomechanical model of a reservoir-caprock-basement system (Fig. 8) 
with a sealing fault in the normal faulting stress regime. The model dimensions are 2 km × 2 km × 2 km in x, y and z
directions. The depth interval of the model is from z = 0.5 km to z = 2.5 km below the ground surface. A dome-shaped 
reservoir is located at the center of the model with an average thickness of 160 m. The fault is located east of the model 
center with a dip angle of 80◦ , and the fault strikes north-south. We have one well near the top of the reservoir dome 
producing oil from the top three layers of the reservoir.

The model is initialized under mechanical and hydrostatic equilibrium with a normal faulting stress regime. We apply a 
lateral compression on the east boundary (x-positive surface) which is 70% of the overburden to create a normal faulting 
stress regime. Both the compression and overburden increase linearly with the lithostatic gradient. Initial stresses are in 
equilibrium with the gravitational and boundary stresses such that the initial displacement is zero. All boundaries are no-
flux boundaries. The reservoir is initially saturated with 12% water and 88% oil. The initial reservoir pressure is around 
2075 psi. We use the linear slip-weakening friction model to describe quasi-static frictional failure on the fault. The friction 
coefficient decreases from a static value μs = 0.5 to a dynamic value μd = 0.2 as the slip magnitude increases from zero 
to the critical slip distance dc = 0.1 m. The value of dc falls within the range of critical slip weakening distance reported 
in multiple studies [68–71]. We use a D-P perfectly plastic model where the yield surface touches the outer vertices of the 
M-C model, i.e. the inscribed D-P model. We use a friction angle of φ f = 20 degree, dilatation angle of φg = 20 degree, and 
cohesion of c = 1 MPa [72]. See the appendix for the relations between (α f , αg, γ ) and (φ f , φg, c). To simulate a gouge 
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Fig. 8. (a) Physical model with a well producing from a reservoir (gray color) confined between caprock and basement (white color) and intersected by a 
fault. (b) A vertical cross section of the reservoir showing the layered topography, well and fault. Positions of the Top point, Hanging wall cell, and Footwall 
cell, where detailed analysis of stress and slip will be carried out in the Results section, are shown.

Table 1
Input parameters.

Parameters Value

Bulk density, ρs (kg/m3) 2460
Oil density at surface conditions, ρo (kg/m3) 806.26
Water density at surface conditions, ρw (kg/m3) 1000.0
Water viscosity at reservoir conditions, μw (cp) 0.4
Biot coefficient, b 0.8
Reservoir permeability (md) 5
Caprock permeability (md) 0.0001
Fault permeability (md) 0.0001
Initial Eulerian porosity, φ 0.1
Static coefficient of friction, μs 0.5
Dynamic coefficient of friction, μd 0.2
Critical slip distance, dc (m) 0.1
Fault cohesive strength (kPa) 0
Friction angle (degree) 20
Dilation angle (degree) 20
Cohesion (MPa) 1
Poisson’s ratio 0.25
Initial horizontal-to-vertical total stress ratio, rtec 0.7
Well perforation top coordinates (x, y, z) (m) (949.4, 971.3, 1376.7)
Well perforation bottom coordinates (x, y, z) (m) (941.1, 972.2, 1440.6)
Number of grid cells in the x-direction, Nx 39
Number of grid cells in the y-direction, Nz 40
Number of grid cells in the z-direction, Nz 43
Average grid cell size (m) 50

zone, we can assign different friction angle, dilation angle and cohesion to the cells adjacent to fault. The model is populated 
with homogeneous isotropic properties given in Table 1. The overburden and underburden are hydraulically isolated from 
the reservoir. Transmissibilities of the fault in the three directions (lateral shear, dip shear, and normal directions) are set to 
zero. The oil relative permeability in presence of water kro , the oil formation volume factor Bo , and the oil viscosity μo are 
plotted as saturation- and pressure-dependent functions in Fig. 9. The formation volume factor is defined as the ratio of the 
fluid density at the atmospheric pressure to the fluid density at reservoir pressure. Bo is related to the oil compressibility 
as co = −(1/Bo)dBo/dpo .

We consider four cases (listed in Table 2) by varying geomechanical properties such as the drained Young’s modulus E
and bulk modulus Kdr . We produce oil at 2000 bbl/day (318 m3/day) for 850 days in the four cases. For each case, we run 
finite strain and infinitesimal strain simulations. To understand the effect of rock type on fault slip and plastic failure, we 
compare the spatial profiles and time evolution of reservoir pressure, vertical displacement, plastic magnitude and slip area 
in four cases. The slip area is important because it determines the seismic event magnitude as per Eq. (10). We analyze 
the stress path at different locations: the hanging wall cell, the footwall cell and the fault top point as shown in Fig. 8 to 
identify the effect of plastic failure on fault slip. We also analyze the stress path in the four cases to understand the rock 
stiffness-induced temporal complexity of plastic failure and fault activation process.
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Fig. 9. (a) Relative permeability of water krw (solid) and relative permeability of oil kro (dash) as functions of the water saturation sw . (b) The oil formation 
volume factor Bo and the oil viscosity μo .

Table 2
Four cases of reservoir-caprock system defined in terms of their elastic moduli.

E (GPa) Kdr (GPa)

Case 1 Overburden and underburden 26.4 17.6
Reservoir 26.4 17.6

Case 2 Overburden and underburden 26.4 17.6
Reservoir 12.9 8.6

Case 3 Overburden and underburden 12.9 8.6
Reservoir 26.4 17.6

Case 4 Overburden and underburden 12.9 17.6
Reservoir 5.3 3.6

Fig. 10. 3D fields of (a) pressure change and (b) water saturation change at day 850. Pressure change is almost zero (yellow color) in the footwall block due 
to the low permeability of the fault. Water saturation increases slightly due to oil production.

4.3.1. Spatial profiles and time evolution
We plot 3D fields of Case 1 results at t = 850 day from the finite strain elastoplastic simulation in Fig. 10 and Fig. 11. 

Due to production, the reservoir pressure decreases and the water saturation increases near the well and propagates to the 
hanging wall side of the reservoir. Because of the impermeable fault, pressure and water saturation remain unchanged on 
the footwall side. The pressure remains almost constant in caprock and basement because they are hydraulically isolated 
from the reservoir.

To understand the geomechanical signatures of reservoir pressure depletion, we plot vertical displacement of the whole 
field in Fig. 11a. Pressure depletion leads to volumetric contraction of the reservoir and causes negative vertical displace-
ments above the reservoir and positive displacement below the reservoir. The maximum downward displacement decreases 
from 3 cm above the reservoir to 1.2 cm on the top surface.

We examine the evolution in the stress vs. average reservoir pressure space of the footwall block cell, where plastic 
failure initiates, and it’s corresponding hanging wall block cell in Fig. 12. Production-induced reservoir contraction leads to 
negative normal stresses for the hanging wall block cells. However, for the footwall block cells, reservoir contraction in the 
hanging wall block applies pull in the x direction and leads to an increase in S ′

xx . In y and z directions, footwall block cells 
experience smaller contraction than hanging wall block cells so S ′

yy and S ′
zz decrease slightly. The combination of normal 

stress changes causes a rapid decrease in effective volumetric stress for hanging wall block cells, and a small decrease in 
effective volumetric stress for footwall block cells (Fig. 12d). Reservoir contraction increases the shear stress magnitude in 
both hanging wall and footwall blocks as shown in Fig. 12c. The deviatoric stress invariant is dominated by changes in the 
normal stresses. The increase in S ′

xx overcomes the decrease in S ′
yy and S ′

zz and leads to a large increase in the deviatoric 
stress in the footwall block. However, for hanging wall block cells, the decrease in S ′

xx balances out with the decrease in S ′
yy
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Fig. 11. 3D fields of (a) vertical displacement, (b) plastic strain magnitude in the footwall block, and (c) slip magnitude on the fault surface at day 850. 
(a) shows a cut-away view of the uz field using a slice along the fault surface and a y = 1000 m slice. See videos in the supplementary material.

Fig. 12. Case 1: Stress evolution. (a) Effective normal stresses (b) and (c) deviatoric stresses versus pressure for the footwall block cell (black line) and it’s 
corresponding hanging wall block cell (blue line). (d) Stress paths of the footwall block cell (black points) and hanging wall block cell (blue points) in the 
stress invariant space.

and S ′
zz and the deviatoric stress remains almost unchanged (Fig. 12b and d). Thus, plastic failure initiates in the footwall 

block and propagates laterally and vertically. The plastic strain magnitude in the footwall block is plotted in Fig. 11b.
Reservoir contraction also applies downward pull on the reservoir top surface and upward pull on the reservoir bottom 

surface. This is production-induced shear. Since the boundary conditions in Fig. 8(a) are such that all points on the fault 
experience downdip tectonic shear, both the production-induced shear and the tectonic shear are acting downdip on the 
top surface. As a result, one of the points on the reservoir top is most likely to slip compared to all other locations on the 
fault. This is confirmed by Fig. 11c which shows that the slip nucleates near the top of reservoir.

To compare the results among finite strain and infinitesimal strain simulations, we keep the pressure drop, which is the 
driving force behind induced seismicity, the same between the two simulations (Fig. 13a). The distributions of displacement, 
plastic strain and fault slip remain similar in both cases to Fig. 11, which implies that finite strain plasticity did not impact 
the location of the hypocenter. However, the magnitudes of these quantities are different in the two simulations which im-
plies that the seismic/aseismic slip onset time and the magnitude are different. This is an important result that can explain 
why some of the induced seismicity simulation models, which assume infinitesimal strain over decade-long production from 
a oil/gas reservoir or injection in an aquifer, under- or over-estimate the timing and magnitude of induced events. Compared 
with the finite strain simulation, as shown in Fig. 13, the vertical displacement in the infinitesimal simulation is smaller 
for the same amount of pressure drop because of a lack of plastic yielding. In the infinitesimal simulation, compared to the 
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Fig. 13. Time evolution of (a) the average reservoir pressure. Evolution of (b) the vertical displacement at the top of the reservoir and (c) at the top of the 
model, (d) plastic strain magnitude at the footwall block cell, and (c) slip area on the fault surface versus the average reservoir pressure for the four cases 
with finite strain and infinitesimal strain simulations. See video of (b) in the supplementary material.

finite strain elastoplastic simulation, the fault slips earlier, at a smaller pressure drop value, and generate a larger slip area 
(larger Mw ) at the end of production.

With different rock types, we observe spatial distributions of pressure, saturation, displacement, plastic strain and fault 
slip that are similar to Fig. 11. However, the time evolutions are different and revealing. With the same amount of oil 
produced, when the reservoir rock has a smaller bulk modulus and Young’s modulus, we observe less reservoir pressure drop 
in Case 2 and Case 4 compared to Case 1 (Fig. 13a). When the overburden and underburden rocks have smaller bulk and 
Young’s moduli compared to those of the reservoir (Fig. 13b Case 3), the reservoir pressure drop is again smaller. To identify 
the effects of pressure depletion on geomechanical behavior, we plot the evolution of vertical displacement and plastic strain 
magnitude of selected points as well as the fault slip area as functions of the average reservoir pressure in Fig. 13b to e. A 
weaker reservoir with smaller elastic moduli can be compressed more easily. So, with the same amount of pressure decline, 
we observe larger vertical deformation in Case 2 and Case 4 compared to Case 1 at both the reservoir top and model 
surfaces. The mechanics-to-flow coupling (stress and strain terms in Eq. (43)) reduces the drop in reservoir pressure during 
production. This mechanism is also known as the compaction drive in petroleum engineering literature [73]. Comparing Case 
1 and Case 3 shows interesting results of practical significance. We observe that Case 3 vertical displacement is larger than 
Case 1 vertical displacement at the reservoir top and smaller than Case 1 vertical displacement at the model top. The 
reason is as follows. The caprock in Case 3 has a smaller modulus and it deforms more. However, the downward pull on 
the caprock decreases as we move away from the reservoir top towards the ground surface because the pressure change is 
localized inside the reservoir and the induced stresses decay rapidly with distance.

With smaller elastic moduli, the plastic failure initiates at a smaller pressure drop as shown in Fig. 13d. The plastic 
strain magnitude also increases faster in Case 2 and Case 4 compared to Case 1. In Case 3, a larger portion of the pressure 
depletion-induced stresses is spent in driving caprock and basement deformations, so we observe a delayed onset of plastic 
failure and a smaller plastic strain magnitude. The fault slips earlier at a smaller pressure drop in Case 2 compared to Case 
1. Since the pressure drop is smaller in Case 3 and Case 4, we do not encounter fault slip during the simulation period. The 
slip is further delayed in Case 3 because caprock and basement rocks are weaker (smaller moduli).

4.3.2. Effect of plastic failure on fault slip
To further understand the relationship between plastic failure and fault slip, we show the results from finite and in-

finitesimal strain simulations for Case 1. We first examine the time evolution in the space of the deviatoric stress invariant √
J2 vs. the effective volumetric stress invariant I ′1. We consider the selected footwall block cell. As shown in Fig. 14a (see 

video in the supplementary material), production-induced compaction leads to negative I ′1 in both finite and infinitesimal 
strain simulations. Before the onset of plastic failure, 

√
J2 increases in the footwall block cell and later reaches the D-P yield 

surface. In the finite strain simulation, 
√

J2 decreases and I ′1 increases (lower compression) after reaching the yield surface. 
In infinitesimal strain simulation, 

√
J2 continues to increase and I ′1 continues to decrease (higher compression).

In Fig. 14b (see video in the supplementary material), we show the time evolution of the hypocenter (Top point on the 
fault surface) in the space of shear traction (τ here refers to |τ s| in Eq. (21)) vs. the effective normal traction (σ ′

n). Reservoir 
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Fig. 14. Stress paths of the (a) footwall block cell and (b) top point on the fault surface from Case 1 finite strain and infinitesimal strain simulations. The 
solid line in each plot is the M-C failure line. The arrows indicate the direction of time. The red star marks the onset of plastic failure. See videos in the 
supplementary material.

contraction causes tension on the fault surface which increases σ ′
n and causes downdip shear on the Top point which 

reduces τ . Initially, the stress paths of both elastoplastic and elastic simulations towards the M-C failure line are similar. 
However, when plastic failure occurs, since plastic failure lowers compression, σ ′

n increases rapidly while τ continues to 
decrease. When plastic failure propagates to the overburden and reservoir boundary, σ ′

n increases at a slower rate and 
τ continues to decrease. This results in a delayed fault slip and a smaller magnitude seismic event in the elastoplastic 
simulation compared to the elastic simulation.

4.3.3. Effect of rock type
Due to production-induced contraction, induced stresses depend on the pressure drop. We further analyze the evolution 

of stress as a function of the average reservoir pressure from the finite strain simulation for different rock types at the 
selected footwall block cell and the fault surface Top point. Initially, the model is under equilibrium with the same initial 
reservoir pressure and initial I ′1 and 

√
J2 in the four cases. Production reduces the reservoir pressure. Before plastic failure 

begins, production-induced reservoir contraction leads to decrease in I ′1 and increase in 
√

J2. As shown in Fig. 15a and b, 
with the same amount of pressure drop, I ′1 decreases less while 

√
J2 increases more when the reservoir has smaller elastic 

moduli. This leads to a relatively faster growth in the yield function f p , defined in Eq. (37), for Cases 2 and 4 compared 
to Case 1, as shown in Fig. 16a. When overburden and basement have smaller moduli, comparing Case 3 and Case 1, the 
pulling effect due to compaction of the hanging wall reservoir is shared by overburden and basement deformations such 
that I ′1 of the footwall cell decreases faster and 

√
J2 increases slower. The yield function f p grows relatively slower for Case 

3 and it requires additional pressure drop to reach plastic failure, as shown in Fig. 16a.
In the 

√
J2 vs. I ′1 space shown in Fig. 17a, as I ′1 decreases, 

√
J2 increases faster for cases with smaller reservoir moduli. 

Since the yield condition requires less 
√

J2 at higher I ′1, cases with smaller reservoir moduli tend to fail at a smaller pressure 
drop. On the other hand, when caprock and basement moduli are smaller, 

√
J2 grows at a smaller rate with decreasing I ′1. 

This means a larger pressure drop is required to reach the D-P failure line. Reservoir is relatively stable. After plastic failure, 
stresses stays on the failure line. I ′1 increases and 

√
J2 decreases.

We show the evolution of σ ′
n and τ as functions of the average reservoir pressure from finite strain simulation for 

different rock type cases at the Top point in Fig. 15c and d. As pressure drops, contraction-induced tension on the fault 
surface leads to an increase in σ ′

n for the four cases. σ ′
n increases slightly faster for cases with smaller reservoir moduli 

(Case 2 and Case 4) while it grows slower for cases with smaller caprock and basement moduli (Case 3). After plastic 
failure, σ ′

n increases at a higher rate. For Cases 2 and 4, which have smaller reservoir moduli, σ ′
n increases faster than 

Cases 1 and 3. After plastic failure reaches the reservoir top boundary, σ ′
n continues to increase with a slower rate in the 

four cases. Reservoir compression causes downdip shear at the top of the reservoir which leads to a decrease in τ at the 
reservoir top point. With smaller reservoir moduli, the reservoir contracts more for the same value of pressure drop, the 
top point experiences larger downdip shear, and τ decreases more as shown in Cases 2 and 4.

We defined the Coulomb Failure Function (CFF) in Eq. (21). In producing reservoirs, the change in τ dominates the 
evolution of CFF on faults because the fault pressure p f in σ ′

n (Eq. (18)) remains either constant or drops slightly. This is 
because p f , during production, is proportional to the pressure on the non-producing side of the fault, so it can correctly 
predict the slip onset time [16,57]. We observe that for a given pressure drop, CFF grows faster in cases when the elastic 
moduli of the reservoir rock is smaller. It leads to an earlier onset of slip in Cases 2 and 4 with a smaller pressure drop. On 
the other hand, when caprock and basement have smaller moduli, both σ ′

n and τ show smaller variation for a given drop 
in the reservoir pressure. Initiation of fault slip requires higher pressure depletion as shown in Fig. 16.

As shown in Fig. 17b, before plastic failure, in the cases where reservoir rocks have smaller moduli, τ decreases faster 
with increasing σ ′

n . Plastic failure leads to a further increase in σ ′
n . Because the decrease in τ is larger than the increase 

in σ ′
n , Cases 2 and 4 reach M-C line earlier. For weaker caprock and basement rocks, τ decreases at a smaller rate with 

increasing σ ′
n . The fault is relatively stable.
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Fig. 15. Effect of rock type on plastic and fault failure. Evolution of (a) effective stress invariant I ′1 and (b) deviatoric stress invariant √ J2 in the footwall 
cell, and evolution of (c) effective normal fault traction σ ′

n and (d) shear traction τ at the Top point as functions of the average reservoir pressure pres

from the four cases in Table 2. The arrows indicate the direction of time. We highlight the initiation of plastic failure with red star and fault slip with red 
pentagon in Case 1.

Fig. 16. Effect of rock type on the rate of failure. Evolution of (a) yield function f p and (b) Coulomb Failure Function C F F , as functions of average reservoir 
pressure pres from the four cases. The arrows indicate the direction of time.

Fig. 17. Stress paths of the (a) footwall block cell and (b) Top point on the fault surface from the four cases. The solid straight line in (a) is the D-P failure 
line and in (b) is the M-C failure line. The arrows indicate the direction of time. See videos in the supplementary material.
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5. Conclusion

We presented a novel simulation framework of coupled multiphase flow, finite strain elastoplasticity and fault slip in 
petroleum reservoirs. The framework incorporates realistic fault constitutive behavior by using a slip-weakening dynamic 
friction model. We applied the framework to benchmark problems as well as to a production-induced seismicity case. We 
investigated the effect of plastic failure on fault stability. We studied the impact of variation in the elastic moduli between 
reservoir and caprock and how this affects production-induced plasticity and slip. The main results are as follows:

1. The poroplastic reservoir exhibits larger vertical deformation and delayed slip than the poroelastic reservoir after the 
same amount of oil production because of plastic yielding.

2. Plastic dissipation releases a part of the mechanical energy generated by production-induced stresses. This reduces the 
energy available for seismic/aseismic slip and results in a delayed slip and a smaller magnitude slip event.

3. Reservoirs with smaller elastic moduli have a smaller pressure depletion for the same amount of production.
4. For the same amount of pressure drop, when the reservoir rock has smaller elastic moduli than those of the caprock, 

the vertical displacement is larger and plastic failure and fault slip begin earlier. When the caprock moduli are smaller 
than those of the reservoir, the vertical displacement is larger on the reservoir top surface and smaller on the ground 
surface (masking effect of the caprock). A higher pressure drop is required to activate plastic failure and fault slip in 
this case.
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Appendix A

Algorithmic Tangent Operator

Below, we derive the expression for the tangent operator, Dn+1.

Large displacement/rotation–large strain The tangent modulus is [50]

Dn+1 = ∂
.
τ ′,n+1

∂dn+1 =
3∑

i=1

3∑
j=1

∂τ ′
i

∂εe,tr
j

mi ⊗ m j +
3∑

i=1

∑
j �=i

(
τ ′

j − τ ′
i

θ
e,tr
j − θ

e,tr
i

)

(
θ

e,tr
j mi, j ⊗ mi, j + θ

e,tr
i mi, j ⊗ m j,i

)
(71)

where mi = ni ⊗ ni , mi, j = ni ⊗ n j , and ni are the eigenvectors of τ ′ ,n+1.

Large displacement/rotation–small strain We combine Eqs. (61) to obtain

dS ′ = 2G
(
de − dep)+ Kdr

(
dE v − dε

p
v
)

1 (72)

The tangent modulus is then given by

Dn+1 = ∂ S ′ ,n+1

∂ En+1 = 2G

(
∂de

∂ En+1 − ∂(dep)

∂ En+1

)
+ Kdr

(
∂(dE v 1)

∂ En+1 − ∂(dε
p
v 1)

∂ En+1

)
(73)

Using e = E − (1/3)E v 1 and Voigt notation for tensors
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∂de

∂ En+1 = 1

3

⎡
⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤
⎥⎥⎥⎥⎥⎦ (74)

and

∂(dE v 1)

∂ En+1 = 1

3
1 (75)

From Eq. (69),

∂dep

∂ En+1 = 1

rn+1

[(
de + sn

2G

)(
∂dλ

∂ En+1 − dλ

rn+1

∂rn+1

∂ En+1

)
+ dλ

∂de

∂ En+1

]
. (76)

The last derivative term appearing in Eq. (73) is given by

∂(dε
p
v 1)

∂ En+1 = αg
∂(dλ)

∂ En+1 , (77)

where the derivative of the plastic multiplier can be calculated from Eq. (67) as

∂(dλ)

∂ En+1 = 1

Kdrα f αg + G

(
α f Kdr

3
1 + G

∂rn+1

∂ En+1

)
(78)

From the definition of r2 as the right hand side of Eq. (65),

∂rn+1

∂ En+1 = 1

2rn+1

∂(rn+1)2

∂ En+1

= 1

rn+1

(
∂de : de

∂ En+1 + 1

G

∂sn : de

∂ En+1

) (79)

The first derivative above is

∂de : de

∂ En+1 = ∂de : de

∂de

∂de

∂ En+1

= 2de : ∂de

∂ En+1 = 2de,

(80)

where we used Eq. (74) and the relation de1 = 0. The second derivative is

∂sn : de

∂ En+1 = T n+1, (81)

where Ti = sn
i for i = 1, 2, 3 and Ti = 2sn

i for i = 4, 5, 6. Therefore,

∂rn+1

∂ En+1 = 2de + (T n+1/G)

rn+1 (82)

Relation between the two sets of Drucker-Prager model parameters For the inscribed version of the model where the D-P yield 
surface touches the outer vertices of the M-C yield surface, we have

α f = 2 sinφ f√
3(3 − sinφ f )

, αg = 2 sinφg√
3(3 − sinφg)

, γ = 6c cosφ0
f√

3(3 − sinφ0
f )

where φ f is the friction angle, φg is the dilatation angle, φ0
f is the initial friction angle, and c is the cohesion. φ f and φg

are functions of the hardening parameter h.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2021.110178.
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